Der Artikel ist weiterhin als ^^OTHERCONDITION^^ verfügbar.

An Invitation to 3-D Vision

From Images to Geometric Models
 Buch
Besorgungstitel | Lieferzeit:3-5 Tage I
ISBN-13:
9780387008936
Einband:
Buch
Seiten:
528
Autor:
Ma Yi
Gewicht:
986 g
Format:
243x156x36 mm
Serie:
Vol.47, Texts in Applied Mathematics
Sprache:
Englisch
Beschreibung:

Preface1 Introduction
1.1 Visual perception: from 2-D images to 3-D models
1.2 A mathematical approach
1.3 A historical perspective
I Introductory material
2 Representation of a three-dimensional moving scene
2.1 Three-dimensional Euclidean space
2.2 Rigid body motion
2.3 Rotational motion and its representations
2.4 Rigid body motion and its representations
2.5 Coordinate and velocity transformations
2.6 Summary
2.7 Exercises
2.A Quaternions and Euler angles for rotations
3 Image formation
3.1 Representation of images
3.2 Lenses, light, and basic photometry
3.3 A geometric model of image formation
3.4 Summary
3.5 Exercises
3.A Basic photometry with light sources and surfaces
3.B Image formation in the language of projective geometry
4 Image primitives and correspondence
4.1 Correspondence of geometric features
4.2 Local deformation models
4.3 Matching point features
4.4 Tracking line features
4.5 Summary
4.6 Exercises
4.A Computing image gradients
II Geometry of two views
5 Reconstruction from two calibrated views
5.1 Epipolar geometry 5.2 Basic reconstruction algorithms
5.3 Planar scenes and homography
5.4 Continuous motion case
5.5 Summary
5.6 Exercises
5.A Optimization subject to epipolar constraint
6 Reconstruction from two uncalibrated views
6.1 Uncalibrated camera or distorted space?
6.2 Uncalibrated epipolar geometry
6.3 Ambiguities and constraints in image formation
6.4 Stratified reconstruction
6.5 Calibration with scene knowledge
6.6 Dinner with Kruppa
6.7 Summary
6.8 Exercises
6.A From images to Fundamental matrices
6.B Properties of Kruppa's equations
7 Segmentation of multiple moving objects from two views
7.1 Multibody epipolar constraint and Fundamental matrix
7.2 A rank condition for the number of motions
7.3 Geometric properties of the multibody Fundamental matrix
7.4 Multibody motion estimation and segmentation
7.5 Multibody structure from motion
This book gives senior undergraduate and beginning graduate students and researchers in computer vision, applied mathematics, computer graphics, and robotics a self-contained introduction to the geometry of 3D vision; that is the reconstruction of 3D models of objects from a collection of 2D images. Following a brief introduction, Part I provides background materials for the rest of the book. The two fundamental transformations, namely rigid body motion and perspective projection are introduced and image formation and feature extraction discussed. Part II covers the classic theory of two view geometry based on the so-called epipolar constraint. Part III shows that a more proper tool for studying the geometry of multiple views is the so- called rank considtion on the multiple view matrix. Part IV develops practical reconstruction algorithms step by step as well as discusses possible extensions of the theory. Exercises are provided at the end of each chapter. Software for examples and algorithms are available on the author's website.

Preface1 Introduction
1.1 Visual perception: from 2-D images to 3-D models
1.2 A mathematical approach
1.3 A historical perspective
I Introductory material
2 Representation of a three-dimensional moving scene
2.1 Three-dimensional Euclidean space
2.2 Rigid body motion
2.3 Rotational motion and its representations
2.4 Rigid body motion and its representations
2.5 Coordinate and velocity transformations
2.6 Summary
2.7 Exercises
2.A Quaternions and Euler angles for rotations
3 Image formation
3.1 Representation of images
3.2 Lenses, light, and basic photometry
3.3 A geometric model of image formation
3.4 Summary
3.5 Exercises
3.A Basic photometry with light sources and surfaces
3.B Image formation in the language of projective geometry
4 Image primitives and correspondence
4.1 Correspondence of geometric features
4.2 Local deformation models
4.3 Matching point features
4.4 Tracking line features
4.5 Summary
4.6 Exercises
4.A Computing image gradients
II Geometry of two views
5 Reconstruction from two calibrated views
5.1 Epipolar geometry 5.2 Basic reconstruction algorithms
5.3 Planar scenes and homography
5.4 Continuous motion case
5.5 Summary
5.6 Exercises
5.A Optimization subject to epipolar constraint
6 Reconstruction from two uncalibrated views
6.1 Uncalibrated camera or distorted space?
6.2 Uncalibrated epipolar geometry
6.3 Ambiguities and constraints in image formation
6.4 Stratified reconstruction
6.5 Calibration with scene knowledge
6.6 Dinner with Kruppa
6.7 Summary
6.8 Exercises
6.A From images to Fundamental matrices
6.B Properties of Kruppa's equations
7 Segmentation of multiple moving objects from two views
7.1 Multibody epipolar constraint and Fundamental matrix
7.2 A rank condition for the number of motions
7.3 Geometric properties of the multibody Fundamental matrix
7.4 Multibody motion estimation and segmentation
7.5 Multibody structure from motion
This book gives senior undergraduate and beginning graduate students and researchers in computer vision, applied mathematics, computer graphics, and robotics a self-contained introduction to the geometry of 3D vision; that is the reconstruction of 3D models of objects from a collection of 2D images. Following a brief introduction, Part I provides background materials for the rest of the book. The two fundamental transformations, namely rigid body motion and perspective projection are introduced and image formation and feature extraction discussed. Part II covers the classic theory of two view geometry based on the so-called epipolar constraint. Part III shows that a more proper tool for studying the geometry of multiple views is the so- called rank considtion on the multiple view matrix. Part IV develops practical reconstruction algorithms step by step as well as discusses possible extensions of the theory. Exercises are provided at the end of each chapter. Software for examples and algorithms are available on the author's website.
Autor: Ma Yi
ISBN-13:: 9780387008936
ISBN: 0387008934
Verlag: Springer, Berlin
Gewicht: 986g
Seiten: 528
Sprache: Englisch
Sonstiges: Buch, 243x156x36 mm, 129 SW-Abb.,