Der Artikel ist weiterhin als ^^OTHERCONDITION^^ verfügbar.
Autor: Theodore W. Berger
ISBN-13: 9781402087042
Einband: Buch
Seiten: 281
Gewicht: 622 g
Format: 235x155x mm
Sprache: Englisch

Brain-Computer Interfaces

An international assessment of research and development trends
This study gathered information on global status and trends in brain-computer interface (BCI) research to disseminate to government decision makers and the research community. It provides a worldwide snapshot of current research and development trends in BCI.
Foreword, Preface, List of Figures, List of Tables, Executive Summary1. Introduction. Theodore W. Berger: Background and Scope, Methodology, Overview of the Report
2. Sensor Technology. Greg A. Gerhardt and Patrick A. Tresco: Introduction, BCI Sensor World Overview, Major Types of Sensors for BCI Technology, Major Challenges for Producing BCI Sensors, Summary and Conclusions, References
3. The Biotic-Abiotic Interface. Patrick A. Tresco and Greg A. Gerhardt: Introduction, BCI Abiotic-Biotic Interface World Overview, Strategies under Development to Improve Electrode Performance, Summary and Conclusions, References
4. BMI/BCI Modeling and Signal Processing. José C. Principe and Dennis J. McFarland: Introduction, Multimicroelectrode Array Techniques, EEG/ECoG Recordings, Summary and Conclusions, References
5. Hardware Implementation. John K. Chapin: Introduction: Restoring Movement in Paralysis Patients, Different Approaches to BCI Research Worldwide, Original Feasibility Demonstrations for Brain-Controlled Robotics, Brain Control of Multiple-Output Functions, Biomimetic Robot Research at the Scuola Superiore Sant'Anna, References
6. Functional Electrical Stimulation and Rehabilitation Applications of BCIs. Dawn M. Taylor: Overview of Functional Electrical Stimulation, FES Applications of BCI Technology Around the World, How Different Types of BCI Command Signals can be Applied to FES, Application Areas of BCI-controlled FES Systems, Practical Considerations, References
7. Noninvasive Communication Systems. Dennis J. McFarland: Introduction, Slow Cortical Potentials, Steady-State Evoked Potentials, Online Evaluations, Prospects for Practical BCI Communication Systems, Summary and Conclusions, References
8. Cognitive and Emotional Neuroprostheses. Walid V. Soussou and Theodore W. Berger: Introduction, Volitional Prostheses, Emotional Computers and Robots, Memory Prostheses, Neurofeedback, Summary and Conclusions, References
9. ResearchOrganization-Funding, Translation-Commercialization, and Education-Training Issues. Theodore W. Berger: BCI Research Organization and Funding, Funding and Funding Mechanisms, Translation-Commercialization, Training-Education, References
Appendix A. Biographies of Panelists and Delegation Members Appendix B. Site Reports-Europe Appendix C. Site Reports-Asia Appendix D. Glossary
We have come to know that our ability to survive and grow as a nation to a very large degree depends upon our scientific progress. Moreover, it is not enough simply to keep 1 abreast of the rest of the world in scientific matters. We must maintain our leadership. President Harry Truman spoke those words in 1950, in the aftermath of World War II and in the midst of the Cold War. Indeed, the scientific and engineering leadership of the United States and its allies in the twentieth century played key roles in the successful outcomes of both World War II and the Cold War, sparing the world the twin horrors of fascism and totalitarian communism, and fueling the economic prosperity that followed. Today, as the United States and its allies once again find themselves at war, President Truman's words ring as true as they did a half-century ago. The goal set out in the Truman Administration of maintaining leadership in science has remained the policy of the U. S. Government to this day: Dr. John Marburger, the Director of the Office of Science and Technology (OSTP) in the Executive Office of the President, made remarks to that effect during his 2 confirmation hearings in October 2001. The United States needs metrics for measuring its success in meeting this goal of maintaining leadership in science and technology. That is one of the reasons that the National Science Foundation (NSF) and many other agencies of the U. S.
Autor: Theodore W. Berger, John K. Chapin, Greg A. Gerhardt, Dennis J. McFarland, José C. Principe, Walid V. Soussou, Dawn M. Taylor, Patrick A. Tresco
José C. Principe is BellSouth Professor in the Electrical and Computer Engineering Department at the University of Florida, Gainesville.
Autor: Theodore W. Berger
ISBN-13:: 9781402087042
ISBN: 1402087047
Verlag: Springer Netherlands
Gewicht: 622g
Seiten: 281
Sprache: Englisch
Sonstiges: Buch, 235x155x mm, XXXIX, 281p.